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Interfacial nonequilibrium and Bé nard-Marangoni instability of a liquid-vapor system
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We study Be´nard-Marangoni instability in a system formed by a horizontal liquid layer and its overlying
vapor. The liquid is lying on a hot rigid plate and the vapor is bounded by a cold parallel plate. A pump
maintains a reduced pressure in the vapor layer and evacuates the vapor. This investigation is undertaken
within the classical quasisteady approximation for both the vapor and the liquid phases. The two layers are
separated by a deformable interface. Temporarily frozen temperature and velocity distributions are employed at
each instant for the stability analysis, limited to infinitesimal disturbances~linear regime!. We use irreversible
thermodynamics to model the phase change under interfacial nonequilibrium. Within this description, the
interface appears as a barrier for transport of both heat and mass. Hence, in contrast with previous studies, we
consider the possibility of a temperature jump across the interface, as recently measured experimentally. The
stability analysis shows that the interfacial resistances to heat and mass transfer have a destabilizing influence
compared to an interface that is in thermodynamic equilibrium. The role of the fluctuations in the vapor phase
on the onset of instability is discussed. The conditions to reduce the system to a one phase model are also
established. Finally, the influence of the evaporation parameters and of the presence of an inert gas on the
marginal stability curves is discussed.
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I. INTRODUCTION

Evaporative convection@1# is of particular interest in
chemical engineering because of its importance in heat
changers, distillation columns, and drying technologies. T
driving mechanism of evaporation can be provided by
heating of a liquid layer from below or by maintaining
small vapor pressure gradient in a nonsaturated gas whe
liquid is open to ambient air. During evaporation, an ess
tial mechanism is latent heat consumption that leads to
tensive cooling of the liquid-vapor interface. This is equiv
lent to consider a liquid layer cooled from above. T
reduction of temperature near the free surface makes the
uid layer more unstable. In turn, the onset of instability lea
to an enhancement of evaporation rate.

To model interfacial heat and mass transfer, it is conv
tional to use an interfacial no-slip condition together with t
interfacial thermal and chemical potential equilibrium con
tion @2,3#. This is referred to as the interfacial equilibriu
assumption. Interfacial chemical potential equilibrium mea
that the temperature of the liquid is at its saturation va
with respect to the pressure in the vapor. The two last
sumptions are nevertheless questionable. Indeed, more
erally, a kinetic relation like the well-known Hertz-Knudse
law @4# should be used in place of the chemical poten
equilibrium condition. The Hertz-Knudsen relation predict
mass flux through the interface proportional to the differen
between the pressure of the vapor and its saturation v
corresponding to the temperature in the liquid. It is on
when the kinetic evaporation coefficient is infinite that inte
facial equilibrium is recovered@5#. The interfacial nonequi-
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librium effect is especially important for a liquid undergoin
rapid evaporation at reduced pressure@6–8#. Moreover, a
temperature discontinuity at the liquid-vapor interface h
been measured at reduced pressure by Shankar and D
pande@9#. Recently, Fang and Ward@10# have experimen-
tally confirmed the existence of such a temperature disco
nuity at the interface during steady-state liquid evaporati
Huang and Joseph@11# have proposed interfacial relation
that account for this interfacial jump of temperature but th
relations have been postulated without firm kinetic or th
modynamic bases and, in addition, they disregarded He
Knudsen’s relation.

A more systematic and general thermodynamical mod
ing of heat and mass transfer through interfaces during ph
changes under conditions of interfacial nonequilibrium w
proposed by Bedeaux@12#. In this approach, based on cla
sical irreversible thermodynamics, the vapor-liquid interfa
is viewed as a separate phase in local equilibrium. It has
advantage to yield interfacial relations that naturally co
with the possibility of a jump of temperature across the
terface and that generalize the Hertz-Knudsen relat
Moreover, this theory is in agreement with the kinetic theo
@13#.

The purpose of this work is to study the role of su
interfacial nonequilibrium effects on Be´nard-Marangoni in-
stability, during evaporation of a liquid into its overlayin
vapor; this will be achieved within the framework of Be
deaux’s theory. It is worth valuable to study the onset
convection and to compare these conditions with the exp
mental results because it gives more insight on the validity
the thermodynamical model as a predictive tool.

The structure of the paper is the following. In Sec. II t
set of governing equations is established, and some phy
parameters for water and its vapor are introduced. Sectio
©2003 The American Physical Society01-1
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deals with the study of some basic flow configurations un
the classical quasisteady assumption for both the vapor
the liquid phases. A linear stability analysis is presented
Sec. IV. The particular case of no-flow heat flux evaporat
in presence of an inert gas is investigated to examine
influence of gas phase diffusion on interfacial nonequil
rium situations. Finally, conclusions are drawn in Sec. V.

II. GOVERNING EQUATIONS

A. Configuration

Consider the general setup sketched in Fig. 1. The liq
is lying on a hot horizontal plate and its vapor is bounded
a parallel cold plate. LetD lv be the distance between the tw
plates. The two horizontal layers are unbounded in the h
zontal (eX ,eY) directions. The vertical coordinateeZ is taken
to be directed from the liquid into the vapor, opposite to t
uniform gravity accelerationg. The hot lower plate is imper
meable but vapor can be evacuated through the cold u
plate by a pump that maintains a reduced pressure in
vapor layer. It is convenient to use the orthonormal fra
(O,eX ,eY ,eZ) with the originO at the bottom plate, (X,Y,Z)
are the Cartesian coordinates andt the time. We use sub
scriptsl andv for liquid and vapor, while subscriptsu andb
design the upper and bottom surfaces, respectively.
equation of the liquid-vapor interfaceS is given by Z
2j(X,Y,t)50. The unit vectorn normal to the interfaceS,
and directed towards the vapor, is given byn5(2“1j
1eZ)/N where “15(]X ,]Y) and N5A11u“1ju2. Let t1
5(eX1]XjeZ)/NX and t25(eY1]YjeZ)/NY be unit vectors
tangent to the interface, withNX5A11(]Xj)2 and NY

5A11(]Yj)2. The interface normal velocity is given b
vS•n5] tj/N. Some quantities may be discontinuous acr
the liquid-vapor interface. We denote bya1 , a2 the values
of any quantitya at the interfaceS, respectively, in the va-
por and the liquid phases with@@a##5a12a2 being the
jump of the quantitya through the interface. The velocit
vector isvk5(uk ,vk ,wk), vnk5vk•n, andvik5vk2vnkn (k
5 l ,v).

The governing equations are the mass, momentum,
energy balance equations in both the liquid and vapor pha
and at the liquid-vapor interface.

B. Phase equations and boundary conditions

The vapor is assumed to be a gas at low Mach numbe
that itsthermodynamic pressure Pv may be taken as constan

FIG. 1. Configuration.
04160
r
nd
n
n
e

-

id
y

i-

e

er
he
e

e

s

nd
es,

so

@14#. Density is then a function of temperature only. T
liquid, a Newtonian one, is assumed to have the same p
erty. Moreover, one considers small variations of tempera
across the liquid and vapor phases so that theBoussinesq
approximation is valid for both the vapor and the liquid
phases@14#. The vapor and liquid balance equations th
reduce to the following equations.

~a! Vapor phase equations:

“•vv50, ~1a!

rvS ]vv

]t
1vv•“vvD52“pv1hvDvv2rvg@12aTv~Tv

2Tr!#eZ , ~1b!

]Tv

]t
1vv•“Tv5kvDTv . ~1c!

HereTv andpv denote the temperature anddynamical pres-
surefields, whilerv is the constant density taken at a give
reference temperatureTr . The coefficientsaT , h, andk are,
respectively, the volumetric expansion coefficient, the d
namic viscosity, and the heat diffusivity,D5“•“ is the La-
placian operator.

~b! Liquid phase equations:

“•vl50, ~2a!

r lS ]vl

]t
1vl•“vlD52“pl1h lDvl2r lg@12aTl~Tl2Tr!#eZ ,

~2b!

]Tl

]t
1vl•“Tl5k lDTl , ~2c!

wherer l is assumed to be constant.
Within the Boussinesq approximation, we haveuTv2Tru

!1/aTv and uTl2Tru!1/aTl .
~c! Wall boundary conditions: At the rigid, impermeab

liquid-hot plate,Z50, with imposed temperatureTb one has

ul5v l5wl50, ~3a!

Tl5Tb . ~3b!

At the rigid permeable vapor-cold plate,Z5D lv with im-
posed temperatureTu and vertical velocitywu , one has

wv5wu , ~4a!

uv5vv50, ~4b!

Tv5Tu . ~4c!

~d! Initial conditions: Att50 the depth of the liquid layer
is given byD l and the initial temperature and velocity pro
files are supposed to be independent of the (X,Y) coordi-
nates and to be known.
1-2
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C. Interfacial equations

The set of equations describing the liquid-vapor evapo
tion must be complemented by interfacial relations. Th
expressions will be either interfacial balance equations
constitutive relations. Here, we use Bedeaux’s@12# descrip-
tion of heat and mass transfer through interfaces to mode
phase changes under interfacial nonequilibrium condition

Let J5r l(vl•n2vS•n) be the interfacial mass flux rela
tive to the motion of the interface andJq652lk“Tk6•n
the normal component of the heat flux at the interface w
lk the conductivity of phase k. The only material property
the interface which is taken into account in this study is
surface tension. We consider that theslow evaporation ap-
proximationis valid, i.e., we neglect the viscous dissipati
and molecular kinetic energy in the energy balance and
vapor recoil term in the normal momentum balance. Then
interfacial balance of mass, momentum, and energy eq
tions are@12#

J5rv~vv•n2vS•n!, ~5a!

052@@p##n2gCn1@@n•t##1“ ig, ~5b!

@@Jq##52@@h##J, ~5c!

whereg is the surface tension,t is viscous stress tensor,C
5“•n is the curvature of the interface, andh is the specific
enthalpy. The surface tensiong is only a function of the
interfacial temperature which is chosen to be equal to
liquid side temperatureT2 @12#. In the linear approximation
one has

g5g r2g r
s~T22Tr!, ~6!

with g r andg r
s reference values evaluated atT5Tr .

We now look at the restrictions placed by the second
of thermodynamics stating that entropy productions is posi-
tive definite. Designating bys the entropy density and byJs
its entropy flux, the entropy production is defined by@15#

s5
]rs

]t
1“•~rsv1Js!, ~7!

where the fields are distribution functions because they c
tain singular contributions at the liquid-vapor interface. U
der the slow evaporation approximation and interfacial
slip condition, it is checked@16# that the interfacial entropy
productionss is

ss5Jq1@@1/T##2JF, ~8!

with F the thermodynamical force corresponding to t
thermodynamic fluxJ. The quantity F is given by F
5T2@@2h1 /T1m/T##, wherem is the chemical potential
The associated interfacial constitutive relations are then

Jq15 l 11@@1/T##2 l 12F, ~9a!

J5 l 21@@1/T##2 l 22F, ~9b!
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where l i j are the phenomenological coefficients withl 12
5 l 21/Tr according to Onsager-Casimir reciprocity relatio
@15#. The coefficientsl 11 and l 22 are positive. These interfa
cial constitutive relations generalize the usual interfac
equilibrium relationsT15T2 and m15m2 that are recov-
ered if we assume that the coefficientsl 11 andl 22 are infinite.
When the constitutive coefficients are finite, the interfa
appears as a barrier for the transport of both heat and m
The interfacial coefficients are function of the interfac
temperatureT2 . However, at a first approximation, they ca
be considered as constant; in analogy with the heat con
tivity and the viscosity, we will consider the value of th
interfacial coefficients the one corresponding to the equi
rium temperatureTr .

Here, we consider evaporation close to a global equi
rium state (Pr ,Tr) taken as the reference state. Then t
pressurePr and the temperatureTr must verify the relation
P(Tr)5Pr , whereP is the liquid-vapor saturation law. Clos
to this equilibrium state,@@h## is assumed constant and equ
to the heat of evaporation at equilibriumL lv(Tr). Moreover,
@@1/T##'2@@T##/Tr

2 andF'R* Trln@P1 /P(T2)# as explic-
itly shown in Ref.@17#, R* is the ideal gas constant divide
by the vapor molar mass. When evaporation takes pl
close to a global equilibrium withl 115`, relation ~9b! re-
duces in the linear approximation to the Hertz-Knudsen
lation

J5
b

A2pR* T2

@P~T2!2P1#,

with the accommodation coefficientb given by b
5 l 22R* TrA2pR* Tr/Pr . On the other hand, if, for the satu
ration law, we use the Clausius-Clapeyron equation

P~T!5PrexpF2
L lv~Tr!

R*
S 1

T
2

1

Tr
D G

then F52L lv(Tr)(T22Tsat)/Tr , where the saturation tem
peratureTsat is defined byP(Tsat)5P1 . Under these condi-
tions the set of equations~9! can be rewritten as

Jq152
l 11

Tr
2 @@T##1

l 12L lv~Tr!

Tr
~T22Tsat!, ~10a!

J52
l 21

Tr
2 @@T##1

l 22L lv~Tr!

Tr
~T22Tsat!, ~10b!

where the saturation temperature is a constant because
thermodynamic vapor pressure is assumed constant. It is
appropriate to choose this pressure as the reference staPr
5P1 , so thatTsat5Tr .

The linearized law~10b! was proved to be satisfied for th
study of dissipative systems when the temperature is c
tinuous across the interface provided that the tempera
remains close to the reference temperature~cf. Ref. @8#!.
There is no reason not to use our generalized linearized
~10a! and ~10b! in presence of a temperature jump at t
interface.
1-3
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TABLE I. Bulk dimensionless parameters.

Liquid Prandtl number
Prl5

h l

r lk l

Froude number
Frl5

k l
2

gDl
3

Density ratio
r5

rv

r l

Rayleigh number
Ral5

r lgaTlD l
3~Tb2Tsat!

h lk l

Dynamic viscosity ratio
h5

hv

h l

Depth ratio
D5

Dlv2D l

D l

Diffusivity ratio
k5

kv

k l

Thermal ratio
T5

Tu2Tsat

Tb2Tsat

Conductivity ratio
l5

lv

l l
Wu5

wuD l

k l

Volumetric expansion ratio
aT5

aTv

aTl

Capacity ratio
Cp5

l

rk
u

-
s

D. Dimensionless equations

We chooseD l , D l
2/k l , k l /D l , h lk l /D l

2 , andTb2Tsat to
scale the length, time, velocity, pressure, and temperat
respectively. In particular, the temperaturesTl and Tv are
made dimensionless byTl→(Tl2Tsat)/(Tb2Tsat) and Tv
→(Tv2Tsat)/(Tb2Tsat). Interfacial mass fluxJ, heat flux,
viscosity tensor, and surface tension are scaled byr lk l /D l ,
l l(Tb2Tsat)/D l , h lk l /D l

2 , andg r , respectively. As a conse
quence, the dimensionless equations are expressed a
lows.

~a! Vapor phase equations:

“•vv50, ~11a!

rS ]vv

]t
1vv•“vvD5Prl~2“pv1hDvv!

1rS aTPrlRalTv2
1

Frl
DeZ , ~11b!

]Tv

]t
1vv•“Tv5kDTv . ~11c!

~b! Liquid phase equations:

“•vl50, ~12a!

]vl

]t
1vl•“vl5Prl~2“pl1Dvl!1S PrlRalTl2

1

Frl
DeZ ,

~12b!

]Tl

]t
1vl•“Tl5DTl . ~12c!

~c! Wall boundary conditions.
At the liquid-hot plateZ50:

ul5v l5wl50, ~13a!
04160
re,

fol-

Tl51. ~13b!

At the vapor-cold plateZ511D:

wv5Wu , ~14a!

uv5vv50, ~14b!

Tv5T. ~14c!

At the interfaceZ5j:

J5r~vv•n2vS•n!, ~15a!

Cr~p22p1!5~12MaCrT2!C1Cr@n•t2•n2hn•t1•n#,

~15b!

~n•t2!•t5h~n•t1!•t2Ma“ iT2 , ~15c!

Jq25Jq11
1

Ku
J, ~15d!

and

T15~12Hc!T22HrJq1 , ~16a!

1

H j
T25HcJq11

1

Ku
J, ~16b!

vi15vi2 , ~16c!

with t5(t1 ,t2), J5vl•n2vS•n, Jq252“Tl•n, and Jq1

52l“Tv•n.
~d! Interfacial kinematic condition:

vS•n5
] tj

A11u“1ju2
. ~17!

~e! Initial conditions:
1-4
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TABLE II. Interfacial dimensionless parameters.

Crispation number
Cr5

h lk l

g rD l
Hr5

Tr
2l l

l 11D l

Marangoni number
Ma5

g r
sD l~Tb2Tsat!

h lk l

Transfer parameters kj5
l 22L lv~Tr!

2D l

Trl l

Kutateladze number

Ku5
Cpl~Tb2Tsat!

L lv~Tr!
kh5

l 12

l 22L lv~Tr!
q

ry

r.
°C

n
ia

e
:

oe
s

n

r
th
de
bu
Se
in

ia

.

l

e
y-
r
t

(

a-
r

te
ess

ce,

l
In-
ntal

es
j51, temperature and velocity profiles independent

of the~X,Y!coordinates. ~18!

The dimensionless parameters that appear in the above e
tions are defined in Tables I and II.

For water at 45 °C,k5120, Prl51.74, Cp50.5, h
54.1022, l53.5 1022, aT52.7 1022, r5631024. For an
initial liquid layer depth D l56 mm, it is found that Cr
51.331027 which means that the crispation number is ve
small. Moreover, Ku/Ma58.231028 so that the Kutateladze
number is very small as regard to the Marangoni numbe

The values of the interfacial transfer coefficients at 0
have been determined by Bedeaux and Kjelstrup@17# from
the experiments of Fang and Ward@10# on water evaporation
into its own vapor. In these experiences, no convection
observed. Moreover, from steady experimental situatio
one can only find two of the three independent interfac
transfer parametersHr , kh , and kj . Therefore, following
Ref. @17#, we assume that the dimensionless coupling co
ficient kh will be given a priori. Two cases are investigated
kh50, i.e., no coupling andkh50.18 as derived from the
kinetic theory of gases. We have also used the scaling c
ficients proposed in Ref.@17# to obtain reasonable estimate
of these coefficients at the reference temperatureTr
545 °C. The corresponding values for the interfacial dime
sionless transfer parameters are reported in Table III.

The values of these coefficients are still acceptable fo
fluid whose interface is moving because, according to
thermodynamical model, the interfacial coefficients are in
pendent of the displacement of the fluid-gas interface
depend only on the temperature. Moreover, as proved in
IV, the qualitative conclusions of our analysis are rather
sensitive to the values of these interfacial parameters.

For further purpose, we introduce two extra interfac
parametersHc and H j given by Hc5khkjHr and H j5@1
2Hc

2/(kjHr)#21kj
21 . The parameterHc is independent of

the liquid layer depthD l . It is of the order of one or smaller

TABLE III. Interfacial dimensionless transfer parameter valu
(D l56 mm, Tr545 °C).

kh 0.18 0
Hr 4.2 3.3
kj 4.8 21
04160
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l

ParametersHr andH j are proportional to 1/D l so that their
values are larger when the liquid depth is smaller.

From an experimental point of view, the temperaturesTb ,
Tu , andTsat, the distanceD lv between the two plates, initia
liquid layer depthD l , and the top cold plate velocitywu are
parameters of the problem. It is convenient@18# to define two
new dimensionless numbersa andL related to Ra and Ma
by

Ra5~Ra0!agL, ~19a!

Ma5~Ma0!~12ag!L, ~19b!

whereag is related toa by

1

ag
215

g0

g S 1

a
21D , ~20!

and where Ra0 , Ma0 are two arbitrary numbers. Here w
choose Ra0 as the critical Rayleigh number for pure buo
ancy instability and Ma0 as the critical Marangoni numbe
for pure thermocapillarity instability,g0 is the acceleration a
the earth surface due to gravity. The quantitya is a measure
of the liquid depth parameterD l since 1/a21
5(Ra0 /Ma0)g r

s/(r lg0aTlD l
2), while L is related to Tb

2Tsat. It is convenient to take the accelerationg due to
gravity as a variable parameter. Under microgravityg
50), the parameterag is null whatever the value of the
initial liquid depthD l and cannot therefore be used to me
sure the depth of the liquid layer. In contrast the parametea
is not zero even forg50 and is therefore the appropria
candidate for evaluating the liquid depth. The dimensionl
parametersT, Ku, Fr, Cr, H j andHr are linked toa andL
via coefficients independent of the liquid depth, for instan

Ku5KunMaA1/a21AMa0 /Ra0 ~21!

with Kun5(Ar lg0aTlCplh lk l) /(g r
s3/2L lv). The new dimen-

sionless parametersa and L are preferred to the classica
Rayleigh and Marangoni numbers for the stability study.
deed, they are directly related to the relevant experime
data, namely, the temperature dropTb2Tsat and the liquid
depth parameterD l .
1-5
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III. QUASISTEADY BASIC SOLUTION

When solving the set of equations~11!–~18!, one finds a
basic one-dimensional unsteady solution independent of
(X,Y) coordinates. Here, we shall work in the frame of t
quasisteady assumptionfor which the time derivatives in the
partial differential equations both in the liquid and vap
phases are neglected but not in the interfacial kinematic c
dition ~17!. This assumption is satisfied after a short tim
during which the liquid depth remains constant, because
the large value of the evaporation heat@8#.

The incompressibility condition leads to a null velocity
the liquid phase, which is therefore in a purely conduct
state, and a constant velocity in the vapor phase. As a
sequence, the interfacial balance of mass reads asWu
5(1/r21)J. The value of the velocityWu at the top cold
plate must assume the particular value given by the solu
of the quasisteady problem.

Within the quasisteady assumption, the temperature
files are

Tl512
12T2

j
Z, ~22a!

Tv5T1~T12T!

12expF2
CpJ

l
~11D2Z!G

12expF2
CpJ

l
~11D2j!G , ~22b!

after using the approximation (1/r)21'1/r. In addition,

Jq25
12T2

j
, ~23a!

Jq15
l~T12T!

11D2j
f S CpJ~11D2j!

l D , ~23b!

with f (x)5x/(expx21).
As a consequence, the interfacial relations~15d!, ~16a!,

and ~16b! constitute a set of three equations for the th
unknownsJ, T2 , andT1 , parametrized by the liquid laye
depthj(t). The variation of the liquid layer depth is given b
the interfacial kinematic conditionJ52dj/dt.

A. One-sided model

If we assume that the heat flux termJq1 is negligible in
relations~15d! and ~16b!, i.e.,

Jq1!J/Ku and Jq1!J/~KuHc!, ~24!

we obtain a liquid phase problem that is uncoupled from
vapor phase problem and whose solution is the same as
given by Burelbachet al. @8#, namely,

J5
Ku

j1H j
, ~25a!
04160
he
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T25
H j

j1H j
, ~25b!

j~ t !52H j1A~11H j !
222~Ku!t. ~25c!

The temperature fieldT1 is then obtained by using relatio
~16b! in which the small heat flux termJq1 is not negligible
and evaluated via relation~23b!. The vapor phase solution i
then given by

Jq15

~12Hc!H j

j1H j
2T

11HrH f ~x!
H f ~x!, ~26a!

T15T22

HcH j

j1H j
1Hr S H j

j1H j
2TD H f ~x!

j

11HrH f ~x!
, ~26b!

with

x5
CpKu

H

1

j1H j
, H5

DH0

11D2j
, H05

l

D
.

According to the interfacial mass flux and heat flux e
pressions~25a! and~26a! and assumption~24!, we conclude
that the one-sided model is satisfactory at timet50 for small
values of H0T and H0H j , i.e., when the thermal ratio
(l/D)T is not too large and the initial vapor layer dep
D lv2D l not too small. We have calculated thatD lv2D l must
be larger than 0.13 mm forkh50.18. Moreover, if the one-
sided model is satisfactory at timet50, it remains also sat-
isfactory as evaporation proceeds because the quantityH de-
creases with time so that the valuesHT and HH j remain
small. Concerning the interfacial equilibrium situation (H j
→0), it should be stressed that when the diffusion mass
J becomes infinite at the end of the interfacial evaporat
process, the quasisteady approximation becomes wrong
cording to Burelbachet al. @8#.

B. No-flow heat conduction solution

A particular situation of interest is when the saturati
temperatureTsat ~or T) is chosen such that the velocity im
posed at the cold top plate is zero. Then, there will be
evaporation. This is the so-calledno-flow heat conduction
solution. We obtain in this case a time-independent solut
j(t)51 with

T52
11@Hr1~211Hc!HcH j #H0

11HcH j

1

H0
, ~27a!

T25
HcH j

11HcH j
, ~27b!

T15T22
Hr1Hc

2H j

11HcH j
. ~27c!
1-6
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With the no-flow saturation temperature given by Eq.~27a!,
we find thatTH0 is of the order 1, so that the one-side
model is not valid. Moreover, for an imposed saturation te
perature close but larger~smaller! than the no-flow saturation
temperature, the liquid will completely evaporate~con-
dense!.

C. Small diffusion mass flux approximation

Another approximation besides the one-sided model is
small diffusion mass fluxapproximation defined byJ
!H/Cp , i.e.,CpJ(11D2j)/l!1. Under this assumption
relations~22b! and~23b! can be reduced and the problem
be solved becomes a two phase coupled linear prob
whose solution reads as

J
Ku

5
11H@Hr1HcH j~211Hc1T!1Tj#

Ht
, ~28a!

T25H j$11H@Hr2~211Hc!Tj#%/Ht , ~28b!

T15T21$HH jHr~211T!2HcH j1H@~211Hc!HcH j

1Hr #Tj%/Ht , ~28c!

with Ht5H j1j1HH jHr1H@(211Hc)
2H j1Hr #j. The

domain of validity of this approximation includes the n
flow heat flux solution and is complementary to the on
sided approximation because no small values ofH0T and
H0H j are allowed. As the quantityH is usually small, one
has

J'
Ku

j1H j
@11HT~HcH j1j!#,

so that the interface velocity increases as evaporation
ceeds and the validity conditionJ!H/Cp can be easily
checked. In particular, for interfacial equilibrium, the sm
diffusion mass flux approximation is not valid at the end
the evaporation process because the diffusion mass fluJ
becomes infinite, as mentioned above.

The evolution of the liquid-vapor interfacej(t) that we
derive in this section, and, in particular, the lawt1/2 of rela-
tion ~25c!, is only valid when the liquid phase is in the sta
of conductive flow.

After having determined the basic quasisteady solution
the liquid-vapor evaporation problem, we will study, in th
following section, its stability with respect to infinitesimall
small disturbances in order to determine the onset of in
bility.

IV. STABILITY ANALYSIS

A. Linearized equations

To study the linear stability of the quasisteady solution,
us reformulate the relevant linearized balance equations.
G85G2Gb be the perturbation of a general quantityG with
the superscriptb referring to the basic quasisteady solutio
For simplicity the superscript8 will be omitted in the follow-
ing of this section. We assume that the basic solution is
04160
-

e

m

-

o-

l
f

f

a-

t
et

.

-

zen during the stability analysis, i.e., that the perturbatio
evolve more rapidly than the basic state. The linearized
mensionless equations for the perturbed quantities are
following.

~a!Vapor phase equations:

“•vv50, ~29a!

r

Prl
S ]vv

]t
1wv

b]vv

]Z D52“pv1hDvv1aTrRalTveZ ,

~29b!

]Tv

]t
1wv

b]Tv

]Z
2

1

l
Jqv

bwv5kDTv . ~29c!

~b! Liquid phase equations:

“•vl50, ~30a!

]vl

]t
5Prl~2“pl1Dvl1RalTleZ! ~30b!

]Tl

]t
2Jql

bwl5DTl . ~30c!

~c! Wall boundary conditions:

At Z50, wl5ul5v l5Tl50. ~31a!

At Z511D, wv5uv5vv5Tv50. ~31b!

~d! Interface (Z5jb):

J5r~w12wS!, ~32a!

Cr~p22p1!52CrF ]wl

]Z2
2h

]wv

]Z1
G1Crx0

bj

2~12MaCrT2
b !D1j, ~32b!

]v1l

]Z2
1“1w25hS ]v1v

]Z1
1“1w1D2Ma~“1T22Jq2

b
“1j!,

~32c!

Jq25Jq11
1

Ku
J1x1

bj, ~32d!

and

T15~12Hc!T22HrJq11x2
bj, ~33a!

1

H j
T25HcJq11

1

Ku
J1x3

bj, ~33b!

v115v122wv
b
“1j, ~33c!

with

D15]X
21]Y

2 , v15~u,v,0!, wS5
]j

]t
, J5w22wS ,
1-7
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Jq2
52

]Tl

]Z2
, Jq152l

]Tv

]Z1
,

and

x0
b52

]pl
b

]Z2
1

]pv
b

]Z1
, ~34a!

x1
b5

]2Tl
b

]Z2
2

2l
]2Tv

b

]Z2
1

, ~34b!

x2
b52~12Hc!Jq2

b 1
1

l
Jq1

b 1Hrl
]2Tv

b

]Z2
1

, ~34c!

x3
b5

1

H j
Jq2

b 2Hcl
]2Tv

b

]Z2
1

. ~34d!

It is convenient to eliminate the horizontal components of
velocity in the linearized set of equations to obtain a verti
velocity-pressure-temperature (w,p,T) system. This is done
by applying the divergence operator on the Navier-Sto
equations~29b! and~30b!, the horizontal divergence operato
on the no-slip boundary and interfacial conditions~31!, ~33c!
and the Marangoni condition~32c!. After use of the continu-
ity equation, we obtain, in the bulk,

Dpv5raTRal

]Tv

]Z
, ~35a!

Prl
21S ]wv

]t
1wv

b]wv

]Z D52
1

r

]pv

]Z
1

h

r
Dwv1aTRalTv ,

~35b!

]Tv

]t
1wv

b]Tv

]Z
2

1

l
Jqv

bwv5kDTv , ~35c!

and

Dpl5Ral

]Tl

]Z
, ~36a!

Prl
21 ]wl

]t
52

]pl

]Z
1Dwl1RalTl , ~36b!

]Tl

]t
2Jql

bwl5DTl , ~36c!

while at the boundaries and the interface:

At Z50,
]wl

]Z
5wl5Tl50, ~37a!

At Z511D,
]wv

]Z
5wv5Tv50, ~37b!
04160
e
l

s

At Z5jb, D1wl22
]2wl

]Z2
2

5hS D1wv12
]2wv

]Z2
1
D

2Ma~D1T22Jq2
b D1j!, ~37c!

]wl

]Z2
5

]wv

]Z1
2wv

bD1j, ~37d!

plus the remaining interfacial conditions~32a!,~32b!,~32d!,
~33a!, and~33b!.

B. Normal mode technique

1. Differential system of equations

According to the normal-mode decomposition, we se
solutions of the form

~p,w,T!5@P~Z!,W~Z!,Q~Z!#exp@ct1 ikX#, ~38!

j5fexp@ct1 ikX#,

wherek is the wave number andc the stability parameter
With the notation85d/dZ, 95d2/dZ2, we obtain the fol-
lowing equations for the amplitudesP(Z), W(Z), Q(Z),
andf, respectively:

Wl92S k21
1

Prl
cDWl2Pl81RalQ l50, ~39a!

Pl92k2Pl5RalQ l8 , ~39b!

Q l92~k21c!Q l1Jql
bWl50, ~39c!

Wv92S k21
r

hPrl
cDWv2

rwv
b

hPrl
Wv82

1

h
Pv81

r

h
aTRalQv50,

~39d!

Pv92k2Pv5rRalQv8 , ~39e!

Qv92S k21
1

k
cDQv2

wv
b

k
Qv81

1

kl
Jqv

bWv50. ~39f!

The corresponding boundary conditions are

Wl~0!50, ~40a!

Wl8~0!50, ~40b!

Q l~0!50, ~40c!

Wv~11D !5Wv8~11D !50, ~40d!

Qv~11D !50, ~40e!

and at the interface (Z5jb):

J5W22cf, ~41a!
1-8
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W22cf5r~W12cf!, ~41b!

Cr~P22P1!52Cr~W28 2hW18 !1@~12MaCrT2
b !k2

1Crx0
b#f, ~41c!

W29 1k2W25h~W19 1k2W1!2Mak2~Q22Jq2
b f!,

~41d!

Q28 5lQ18 2
1

Ku
J2x1

bf, ~41e!

and

W28 5W18 1k2wv
bf, ~42a!

Q15~12Hc!Q21HrlQ18 1x2
bf, ~42b!

1

H j
Q252HclQ18 1

1

Ku
J1x3

bf. ~42c!

To investigate the role of the interfacial thermal and m
resistances on the liquid-vapor instability, we consider a c
figuration for which the interfacial deformation and gravi
forces are negligible. We show in the following section th
in this situation, the instability problem can be reduced t
one-sided liquid phase model with the vapor fluctuatio
taken into account through the introduction of an equival
Biot number, the expression of which will be derived. To
specific, we consider a liquid layer of initial depthD l
56 mm equal to the depth of the vapor phase, i.e.,D51,
a50.148, andTr545°C. In this case,H0 is small and we
are left with the only independent parametersL and T.
Moreover, we suppose that the interface isundeformable
(f50), since the crispation number is very small for a w
ter layer of this depth, and taken for granted theexchange of
stability hypothesis (c50).

2. No-flow heat conduction approximation

We first study the stability of the no-flow heat conducti
basic state because it is the much easier situation. Thewv

b

50 andj51. Moreover, as this basic state is still steady,
frozen assumption is not necessary.

Under microgravity conditions (g50), the solutions in
the vapor phase have the following structure:

Pv5h@b1f 6~Z!1b2f 5~Z!#, ~43a!

Wv5~b31b1Z/2! f 6~Z!1~b41b2Z/2! f 5~Z!, ~43b!

Qv5Fb51
1

kl
Jqv

bf 7~Z!G f 6~Z!

1Fb61
1

kl
Jqv

bf 8~Z!G f 5~Z!, ~43c!

with six unknown coefficientsbi and

f 5~Z!5cosh@k~Z212D !#,
04160
s
-

t
a
s
t

-

e

f 6~Z!5sinh@k~Z212D !#,

f 7~Z!52@b2k2Z21k~2b114b4k!Z#/~8k3!,

f 8~Z!52@b1k2Z21k~2b214b3k!Z#/~8k3!.

If the two interfacial liquid side quantitiesW2 andW28 are
known, then the four equations~40d!, ~41a!, ~41b!, and~42a!
give the values of the coefficientsb1 , b2 , b3, andb4, while
equations~40e! and~42b! lead to the values of the remainin
two coefficientsb5 andb6 if we admit that the quantityQ2

is known. The remaining three interfacial conditions take
form

Q22
H j

Ku
W252H jHcgTv , ~44a!

W29 1k2W21Mak2Q252k2
h

r
f Wv~Dk!W2

2
h

D
d f Wv~Dk!W28 , ~44b!

Q28 1
1

Ku
W25gTv , ~44c!

with

gTv5
Jqv

bD2

k
d f Tv~Dk!W28 1

Jqv
bD

kr
f Tv~Dk!W2

2~12Hc!H0f tTv~Dk!Q2 , ~45a!

and

f Wv~x!56 f ~x!/x2,

d f Wv~x!54 f ~x!/h~x!,

f Tv~x!5
3 cosh@2x#23~112x2!22x3tanh@x#

~8/3!x6
„g~x!/ f ~x!…

,

d f Tv~x!5
sinh@x#2tanh@x#2x3

~4/3!x7
„g~x!/ f ~x!…

, ~45b!

f tTv~x!51/g~x!,

f ~x!5
2x4/3

cosh@2x#2122x2
,

g~x!5
~Hrl/D !x1tanh@x#

x
,

and

h~x!5
4x3/3

sinh@2x#22x
.

1-9
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The problem is now equivalent to a liquid-side proble
This one-sided model can always be obtained since the
functionsg andh are positive so that the quantities defin
by the set~45b! exist. Note that the above one-sided mode
not of the Pearson-like form@19# as derived by Burelbach
et al. @8# because of the presence of the parameterW28 in the
set ~44!. However, we can overcome this problem by e
pressingW28 as a function ofW29 andW2 .

This can be achieved as follows. First, observe that in
liquid, the field variables can be written as

pl5a cosh@kZ#1b sinh@kZ#, ~46a!

wl5~c1aZ/2!cosh@kZ#1~d1bZ/2!sinh@kZ#, ~46b!

Tl

Jql
b
5F f 2

b

8k
Z21S a

8k2
2

d

2kD ZGcosh@kZ#1Fg2
a

8k
Z2

1S b

8k2
2

c

2kD ZGsinh@kZ#. ~46c!

If we suppose that the solutions of the set~40a! and ~40b!,
W2 , andW29 are known, we can determine the coefficien
a, b, c, andd and writeW29 as a function ofW2 andW28 .
This leads to

W29 5
4 f ~k!

h~k!
W28 2~k216 f ~k!!W2 ,

so that the quantityW28 can now be written in terms ofW2

andQ2 by elimination ofW29 from Eq. ~44b!; the result is

a1W28 5S 12
h

rD2

f ~Dk!

f ~k! D 3h~k!

2
W22Ma

k2h~k!

4 f ~k!
Q2 ,

whereina1511(h/D)@h(k)/4f (k)#d f Wv(Dk).
Expression ofgTv reduces to

gTv5gtTvQ21gwTvW2 , ~47!

with

gtTv52a1
21 k2h~k!

4 f ~k!
d f Tv~Dk!

Jqv
bD2

k
Ma

2~12Hc!
l

D
f tTv~Dk!, ~48a!

gwTv5
Jqv

bD

kr
f Tv~Dk!1a1

21 k2h~k!

4 f ~k!
d f Tv~Dk!

3S 12
h

rD2

f ~Dk!

f ~k! D 3h~k!

2
, ~48b!

so that Eq.~44a! reduces to

W25Peru2 ,
04160
.
o

s

-

e

after introducing the scalingu5Q/Jql
b for the liquid tem-

perature and setting Per5Jql
b@11H jHcgtTv#/@1

2KuHcgwTv#(Ku/H j ). These operations lead to a Pearso
like ‘‘reduced’’ model, expressed by

W25Peru2 , ~49a!

W29 1k2Maru250, ~49b!

u28 1Biru250. ~49c!

with the new ‘‘reduced’’ Marangoni Mar and Biot numbers
Bir given by

Mar5Jql
bMa1(11 f 3)Per1

hd f Wv(Dk)

Dk2a1
F f 4

3h~k!

2
Per

2
k2h(k)

4 f (k)
Jql

bMaG , ~50a!

Bir5

1

H j
2~12Hc!gtTv2

Ku

H j
gwTv

12KuHcgwTv
, ~50b!

with f 35(h/r) f Wv(Dk) and f 4512@k2/6f (k)# f 3.
The relations~50a! and~50b! can still be simplified under

the following hypotheses. Indeed, ifh/D is small thena1

'1 and Mar'Jql
bMa1(11 f 3)Per . Moreover, the function

f 3 is less than 100 provided thatDk.1.6. The ratio (1
1 f 3)Per /(Jql

bMa) is of the order of (11 f 3)Ku/(MaH j ) and
is very small provided thatH j is not too small which implies
l 228 !631024 kg2 J21 m22 s21. This quantity is of the order
of 1028 kg2 J21 m22s21 @17# so that Mar'Jql

bMa. In this
relation Jql

b is of the order of 1 and comes out because
have chosenTb2Tsat instead ofTb2T2 for the characteristic
difference of temperature. The denominator in Biot’s relati
~50b! can be approximated by one since the Kutalelad
number is very small. Moreover, in the numerator of E
~50b!, the third term is negligible compared to the seco
one as Ku/(MaH j ) is very small so that Bir'(1/H j )2(1
2Hc)gtTv . The first term in the expression~48a! of gtTv
can also be neglected compared to the second one and t
fore one obtains the final simplified expressions

Bir'
1

H j
1

~12Hc!
2

Hr1
tanh@Dk#

lk

, ~51a!

Mar'Jql
bMa. ~51b!

For Hr5Hc50, the second contribution in Bir is due to
heat conduction in the gas only, while the first one is due
kinetic nonequilibrium effects at the interface@5#. Clearly,
the relation~51a! is a generalization including heat and ma
transfer barriers at the interface.

The set of six equations~49a!–~49c!, and~40a!–~40c! has
a nontrivial solution only if
1-10
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Mar5 f Ma~k!S 11
tanh@k#

k
Bir2 f Pe~k!Per D , ~52!

with

f Ma~k!58
cosh@k#~cosh@k#sinh@k#/k21!

~sinh@k#/k!32cosh@k#

f Pe~k!5
~724k215 cosh@2k# !tanh@k#/k22~61k2!

16k2~cosh@k#sinh@k#/k21!
.

The function f Ma(k) is identical to the well-known Ma-
rangoni neutral stability curve for an adiabatically isolat
upper boundary. It is minimum at 79.61 with a critical wa
number k51.99. The function f Ma(k)@11(tanh@k#/k)Bir #
was derived by Pearson@19#. It has a minimum varying be
tween 79.61 and̀ with critical wave number values varyin
from k51.99–3.01 when Bir number is increased from 0 t
`.

The functionf Pe(k) decreases from 0.275 atk50 to 0 at
k5`. For k between 2 and 3,f Pe'0.1; the termf PePer is
then negligible according to the above choice of the coe
cient l 228 , so that the Pearson relation remains valid with
above~51a!–~51b! choice of equivalent Biot and Marangon
numbers.

To conclude, we have shown that the stability of t
liquid-vapor system can be described by Pearson’s mo
@19# at the condition to introduce an equivalent Biot numb
given by~51a!. This is the Biot number that would have bee
found from thevapor conductive assumption, i.e., by ne-
glecting the vapor velocity fluctuations. In this case, the s
tem is the most stable as the coefficientsH j and Hr are
small. Using the numerical values of Table III, it is check
from Eq. ~51a! that the interfacial thermal resistance pr
vides a small correction to the Biot number ifkh50.18
which becomes negligible forkh50. Therefore, it can be
stated that the limiting mechanism is essentially interfac
mass transfer. We have compared the neutral stability cu
obtained, respectively, from a spectral tau numerical res
tion of the linear two phase problem, the linear Pearson-
model ~49! and the above equivalent Pearson model: Fig

FIG. 2. Neutral stability curves: Marangoni versus wave num
(kh50.18).
04160
-
e

el
r

-

l-
es
u-
e
2

shows a very good agreement. This comparison validates
spectral Tau numerical code at least in absence of gravit

As mentioned earlier, there remains an incertitude ab
the values of the phenomenological coefficients. To ch
the role of these parameters, we have computed~see Fig. 3!
the neutral stability curve for an interfacial phenomenolo
cal coefficientHr that is 50% less than the value reported
Table III and a value ofkj twice the value reported in Tabl
III. Figure 3 shows that the results behave qualitatively in
same way so that the relative importance of the differ
mechanisms that contribute to the onset of the instabi
appear to be not fundamentally influenced by the values
the interfacial transfer coefficients. Of course, it would
valuable to compare our results with experimental ones p
formed in presence of convection to obtain more realis
values of the coupling coefficientkh and to validate our in-
terfacial thermodynamical modeling.

3. Quasisteady flow

To have an insight about the role of the evaporation r
on stability, we shall investigate the stability of the qua
steady flow in the small diffusion mass flux limit. Interfaci
thermal resistance will be neglected according to the res
of Sec. IV B 2. As the evaporation rateJb is generally small,
the analysis will be limited to the first-order correction inJb.
After some algebra, it is shown that the equivalent Biot a
Marangoni numbers are

Bir5
1

H j
1

kl

tanh@k~11D2j!#
2

Cp

2
Jb, ~53a!

Mar5Jql
bMa, ~53b!

with Jb5Ku(11HT)/(H j1jb1HH j ). It follows that the
neutral stability curve Mar versus the wavenumber, with Mar
defined in terms of the temperature difference across the
uid layer, is not influenced by the quasisteady basic flow
we neglect the third contribution in Bir . In contrast„ recall-
ing that the liquid heat flux is given byJql

b5@1
2(H j /Ku)Jb#/jb

…, the Marangoni number Ma expressed
terms of the differenceTb2Tsat between the temperature a
the lower plate and the saturation temperature at vapor p
sure is greatly modified by the presence of the quasiste
basic flow.

r FIG. 3. Interfacial parameters variations (kh50.18).
1-11
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As shown in Fig. 4, the agreement between the res
provided by a spectral Tau numerical resolution of the lin
two phase problem and the above equivalent Pearson m
is excellent at the initial timetb50.

If the temperature differenceTb2Tsat is small enough
then the system is initially stable. When evaporation p
ceeds, the neutral stability curve goes up so that the syste
more and more stable. For sufficiently large values of
temperature differenceTb2Tsat, instability sets in at the ini-
tial time tb50.

4. No-flow heat conduction with an inert gas

To investigate the influence of the interfacial mass re
tance compared to the diffusion of the vapor in the gas ph
in presence of an inert gas, we reexamine the no-flow h
conduction approximation of Sec. IV B 2 in presence of
inert gas. As justified by the results of Sec. IV B 2, we n
glect the interfacial thermal resistance.

This situation is easily described by introducing a n
variable in the gas phase, namely, the vapor specific den
Yv . This quantity verifies the following balance equatio
written in dimensional form

]Yv

]t
1vg•“Yv5DgDYv , ~54!

Dg is the gas diffusivity. Subscriptg will replace subscriptv
used in the previous sections. The relevant boundary co
tion is ]Yv /]Z(D lv)50. The nonsolubility property of the
inert gas in the liquid can be expressed by

atZ5j, Dg“Yv1~12Yv!J/rg50. ~55!

By neglecting the interfacial thermal resistance, the inte
cial phenomenological relations are

T15T2 , ~56a!

J5 l 22R* Trln@P~T2!/Pv1#, ~56b!

with Pv the partial vapor pressure@12#. The liquid-vapor
saturation curve writes as

FIG. 4. Neutral stability curves: Marangoni versus wave num
(kh50.18, thermal ratioT51, initial time tb50).
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P~T!5PrexpF2
L lv~Tr!

R*
S 1

T
2

1

Tr
D G ~57!

while, according to the ideal gas equation of state, the pa
vapor pressure is given by

Pv5Pg Y S 11
Wv

Wa

12Yv

Yv
D , ~58!

wherein the global pressurePg is a constant. The saturatio
temperatureTsat is defined byP(Tsat)5Pg and is also a con-
stant. Settingr w5Wa/Wv the ratio of molar weights, for
temperatures close to the reference temperatureTr , relation
~56b! can be rewritten as

J5 l 22R* TrF2
L lv~Tr!

R* Tr
2 ~Tsat2T2!1 lnS 11~r w21!Yv1

r wYv1
D G .

~59!

In dimensionless form, Eqs.~54!, ~55!, and~59! become

]Yv

]t
1vg•“Yv5

k

Le
DYv , ~60!

k

Le
“Yv11~12Yv1!J/r50, ~61a!

J5
Ku

H j
FT21

Ky

Ku
lnS 11~r w21!Yv1

r wYv1
D G , ~61b!

wherein we have introduced two new parameters: the Le
number Le5kg /Dg and Ky5CplR* Tr

2/L lv(Tr)
2. Typically

Le'1 and Ky5331022.
The no-flow basic solution is know given by the tempe

ture profiles

Tl
b512~12T2

b !Z, ~62a!

Tv
b5T1~T1

b 2T!~11D2Z!/D, ~62b!

T52
1

H0
2S 11

1

H0
DKy

Ku
lnS 11~r w21!Yv

b

r wYv
b D , ~62c!

T2
b 52

Ky

Ku
lnS 11~r w21!Yv

b

r wYv
b D , ~62d!

T1
b 5T2

b , ~62e!

where Yv
b is uniform and known. The linearized perturbe

equations are

]Yv

]t
5

k

Le
DYv , ~63!

with, at Z51:

k

Le
“Yv1~12Yv

b!J/r50, ~64a!

r
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J5
Ku

H j
S T22

Ky

Ku
f Yv

Yv1D , ~64b!

wherein f Yv
5(1/Yv

b)/@11(r w21)Yv
b# varying from` at Yv

b

50 to 1/r w at Yv
b51.

Referring to the normal mode technique, we writeYv
5Yexp@ct1ikX# so that for an undeformable interface, th
relevant equations are

Y92S k21
Le

k
cDY50, ~65a!

atZ511D, Y850, ~65b!

atZ51,
k

Le
Y18 1~12Yv

b!J/r50, ~65c!

Ku

H j
S T22

Ky

Ku
f Yv

Y1D5J. ~65d!

Assuming exchange of stability (c50), the solution of Eqs.
~65a!–~65c! takes the form

Y5b7cosh@k~z212D !#, ~66!

with b75Le(12Yv
b)/(krk sinh@Dk#)J; the interfacial tem-

perature is found to be given by

T25
H jr

Ku
J, ~67!

wherein we have introduced an equivalent interfacialH jr
coefficient

H jr 5
Ky f Yv

Le~12Yv
b!

krk tanh@Dk#
1H j . ~68!

This new coefficient is independent of the temperature
ferenceTb2Tsat but depends on the wave numberk. We are
led to the same mathematical set of equations as in
IV B 2, but with H jr instead ofH j . The new value of the
number Per is now Per5Jql

bKu/H jr . As Per is much smaller
than Ku/H jr , one has

Mar'Jql
bMa, ~69a!

Bir'Per /~KuJql
b!. ~69b!

We recover again Pearson’s model at the condition to in
duce the Biot number

Bir5
1

H jr
5

1

KyLe

kr

f Yv
~12Yv

b!

k tanh@Dk#
1H j

. ~70!

In the denominator of relation~70!, the interfacial nonequi-
librium contribution is negligible as regard to the first ma
diffusion term if H jkrk tanh@Dk#/Ky f Yv

Le(12Yv
b) !1.
04160
f-

c.

-

For a liquid layer surmounted by a vapor-air layer of t
same depth withTr545°C and fork52, this condition be-
comesH j!(12Yv

b)/@4.6(110.6Yv
b)Yv

b#. This is satisfied if
H j is small enough andYv

b not too close to one for which we
recover the liquid-vapor previous situation. Then interfac
mass resistance is negligible compared to the vapor diffus
mass resistance. For example, forYv

b50.2, we needH j

!0.8 and this condition is met by a 6-mm-thick liquid lay
if the coupling coefficientkh is zero~see Table III!. If inter-
facial nonequilibrium is negligible, the equivalent Biot num
ber is the inverse of a thermal resistance that is now du
the vapor diffusion which is the limiting process. Instabili
is more likely to occur than in the liquid-vapor system. In t
above expression of the Biot number, we have neglected
gas phase conduction thermal resistance since this ter
small with respect to the vapor diffusion resistance.

According to the Pearson-like model, the critical M
rangoni number Mar expressed in terms of the difference
temperature across the liquid layer, is positive so that
liquid temperature gradient is negative at the onset of in
bility. Moreover, the basic liquid heat flux is given by

Jql
b511aa /Ma, ~71!

with

aa5
Ky

KunA1/a21AMa0 /Ra0

lnS 11~r w21!Yv
b

r wYv
b D .

It follows from relation ~69a! that Ma5Mar2aa . As the
coefficient aa is usually larger than the critical value fo
Mar , the critical Marangoni number Ma defined by the d
ference between the temperature of the lower plate and
saturation temperature at vapor pressure is negative anTb
,Tsat. Moreover, fromT'2Mar /(HMa) andH!1, it is
seen thatT.0 so thatTu.Tsat and the gas temperature gr
dient is positive.

As no-flow heat conduction is a particular case, one c
not extend the results for the mass-diffusion-limited regi
of Sec. IV B 4 to the quasisteady situation of Sec. IV B
Indeed, for the quasisteady situation with an inert gas,
diffusion equation is coupled with the gas momentum b
ance and therefore more investigation is needed. Ha and
@3# have studied Marangoni instability in a horizontal lay
of finite depth that evaporates into an infinite depth gas la
composed of both vapor and inert gas. Their analysis
sumes an initial transitory regime where the gas phas
quasisteady, but the liquid phase unsteady with a cons
liquid layer depth. Moreover, their analysis is restricted
fluctuations in the gas phase that are unidirectional and s
lar to the basic solution, so that they are led to a liquid ph
model. It is not clear to which extent such an assumption
justified. Indeed, in the no-flow situation presented in t
section, we find an equivalent Biot number that depends
the wave number. Clearly, the role of mass diffusion un
general vapor fluctuations remains an open problem.
1-13
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V. CONCLUSIONS

The role of evaporation~in a two-phase liquid-vapor sys
tem! on Marangoni instability is examined. It is shown th
the perturbation equations for the two-phase setting can
reduced to a single liquid phase model by the introduction
an equivalent Biot number.

It is seen that evaporation has a stabilizing influence si
the transfer of heat and mass through the liquid-vapor in
face is equivalent to a positive Biot number that tends
infinity in the interfacial equilibrium case. In contrast, inte
facial nonequilibrium has a destabilizing influence as
Biot number decreases when interfacial nonequilibrium
fects become more and more important. Even if the temp
ture field is discontinuous through the liquid-vapor interfa
the interfacial thermal resistance has a small influence on
evaporation rate and on the stability. The regime
interfacial-mass-transfer limited.

The position of the liquid-vapor interface is not necess
ily fixed but has been allowed to vary ast1/2. Such a depen-
dence is shown to be valid when the liquid is in the unp
turbed reference state and it is therefore justified to use
same law to determine the threshold of instability. Above t
critical point, motion sets in and the position of the interfa
will generally follow a more general dependence in t
course of time. The determination of such a law require
ch

04160
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a

nonlinear analysis which is outside the scope of the pres
work but is presently under progress.

Onset of instability usually coincides with the beginnin
of the quasisteady regime but such regime should occur a
a transitory regime that should be investigated in more de
to better apprehend the physics behind the evaporation
cess.

The role of diffusion in the gas phase has also been
amined in the simple no-flow situation. We have found th
the perturbation equations still reduce to a liquid pha
model by the introduction of an equivalent Biot number. Th
Biot number includes the heat resistance of both vapor
fusion in the gas phase and interfacial nonequilibrium.
have shown that the interface can be considered at equ
rium under the condition that the vapor specific density is
too close to 1 and the liquid depth not too small. The regi
is then mass-diffusion limited. More general situations,
cluding finite velocities will to be investigated in the futur
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